GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms
نویسندگان
چکیده
BACKGROUND The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point. METHODS In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated. RESULTS When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal. CONCLUSION Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the median GTV dose provides a very robust method for treating lung lesions.
منابع مشابه
Dosimetric Comparison of Different Prescription Modes in Lung Stereotactic Body Radiation Therapy
The purpose of this study was to compare the dose-volume statistics of stereotactic body radiotherapy (SBRT) for lung cancer between planning target volume (PTV): D95 and gross tumor volume (GTV): D99 dose prescriptions using Monte Carlo (MC) calculation. Plans for 183 patients treated between October 2010 and April 2013 were generated based on four-dimensional (4D) computed tomography (CT) und...
متن کاملClinical introduction of Monte Carlo treatment planning for lung stereotactic body radiotherapy
The purpose of this study was to investigate the impact of Monte Carlo (MC) calculations and optimized dose definitions in stereotactic body radiotherapy (SBRT) for lung cancer patients. We used a retrospective patient review and basic virtual phantom to determine dose prescriptions. Fifty-three patients underwent SBRT. A basic virtual phantom had a gross tumor volume (GTV) of 10.0 mm with equi...
متن کاملAdapted Prescription Dose for Monte Carlo Algorithm in Lung SBRT: Clinical Outcome on 205 Patients
PURPOSE SBRT is the standard of care for inoperable patients with early-stage lung cancer without lymph node involvement. Excellent local control rates have been reported in a large number of series. However, prescription doses and calculation algorithms vary to a great extent between studies, even if most teams prescribe to the D95 of the PTV. Type A algorithms are known to produce dosimetric ...
متن کاملEvaluation of 4D dose to a moving target with Monte Carlo dose calculation in stereotactic body radiotherapy for lung cancer.
We evaluated the four-dimensional (4D) dose to a moving target by a Monte Carlo dose calculation algorithm in stereotactic body radiation therapy (SBRT) planning based on the isocenter dose prescription. 4D computed tomography scans were performed for 12 consecutive patients who had 14 tumors. The gross tumor volume (GTV) and internal target volume (ITV) were contoured manually, and the plannin...
متن کاملStereotactic Body Radiotherapy for Lung Lesions using Multiple Phase 3D-CT Based on the Analysis of Radiobiological Parameters
Introduction: Planning target volume (PTV) is generated from internal treatment volume (ITV) using four-dimensional computed tomography (4D-CT) for enhanced therapeutic gain in the stereotactic body radiotherapy for lung lesions (SBRT-Lung). This study aimed to propose a strategy to generate ITV on multiple-phase 3D-CT and enhance therapeutic gain in SBRT-Lung. <stron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014